Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Frontiers in bioinformatics ; 2, 2022.
Article in English | EuropePMC | ID: covidwho-2102795

ABSTRACT

Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has demonstrated its ability to rapidly and continuously evolve, leading to the emergence of thousands of different sequence variants, many with distinctive phenotypic properties. Fortunately, the broad application of next generation sequencing (NGS) across the globe has produced a wealth of SARS-CoV-2 genome sequences, offering a comprehensive picture of how this virus is evolving so that accurate diagnostics, reliable therapeutics, and prophylactic vaccines against COVID-19 can be developed and maintained. The millions of SARS-CoV-2 sequences deposited into genomic sequencing databases, including GenBank, BV-BRC, and GISAID, are annotated with the dates and geographic locations of sample collection, and can be aligned to and compared with the Wuhan-Hu-1 reference genome to extract their constellation of nucleotide and amino acid substitutions. By aggregating these data into concise datasets, the spread of variants through space and time can be assessed. Variant tracking efforts have initially focused on the Spike protein due to its critical role in viral tropism and antibody neutralization. To identify emerging variants of concern as early as possible, we developed a computational pipeline to process the genomic data and assign risk scores based on both epidemiological and functional parameters. Epidemiological dynamics are used to identify variants exhibiting substantial growth over time and spread across geographical regions. Experimental data that quantify Spike protein regions targeted by adaptive immunity and critical for other virus characteristics are used to predict variants with consequential immunogenic and pathogenic impacts. The growth assessment and functional impact scores are combined to produce a Composite Score for any set of Spike substitutions detected. With this systematic method to routinely score and rank emerging variants, we have established an approach to identify threatening variants early and prioritize them for experimental evaluation.

2.
Am J Pathol ; 192(4): 642-652, 2022 04.
Article in English | MEDLINE | ID: covidwho-1777930

ABSTRACT

Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to dramatically alter the landscape of the coronavirus disease 2019 (COVID-19) pandemic. The recently described variant of concern designated Omicron (B.1.1.529) has rapidly spread worldwide and is now responsible for the majority of COVID-19 cases in many countries. Because Omicron was recognized recently, many knowledge gaps exist about its epidemiology, clinical severity, and disease course. A genome sequencing study of SARS-CoV-2 in the Houston Methodist health care system identified 4468 symptomatic patients with infections caused by Omicron from late November 2021 through January 5, 2022. Omicron rapidly increased in only 3 weeks to cause 90% of all new COVID-19 cases, and at the end of the study period caused 98% of new cases. Compared with patients infected with either Alpha or Delta variants in our health care system, Omicron patients were significantly younger, had significantly increased vaccine breakthrough rates, and were significantly less likely to be hospitalized. Omicron patients required less intense respiratory support and had a shorter length of hospital stay, consistent with on average decreased disease severity. Two patients with Omicron stealth sublineage BA.2 also were identified. The data document the unusually rapid spread and increased occurrence of COVID-19 caused by the Omicron variant in metropolitan Houston, Texas, and address the lack of information about disease character among US patients.


Subject(s)
COVID-19 , Vaccines , COVID-19/epidemiology , Hospitalization , Humans , SARS-CoV-2/genetics , Texas/epidemiology
3.
Microbiol Spectr ; 9(3): e0180321, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1561786

ABSTRACT

The ARTIC Network provides a common resource of PCR primer sequences and recommendations for amplifying SARS-CoV-2 genomes. The initial tiling strategy was developed with the reference genome Wuhan-01, and subsequent iterations have addressed areas of low amplification and sequence drop out. Recently, a new version (V4) was released, based on new variant genome sequences, in response to the realization that some V3 primers were located in regions with key mutations. Herein, we compare the performance of the ARTIC V3 and V4 primer sets with a matched set of 663 SARS-CoV-2 clinical samples sequenced with an Illumina NovaSeq 6000 instrument. We observe general improvements in sequencing depth and quality, and improved resolution of the SNP causing the D950N variation in the spike protein. Importantly, we also find nearly universal presence of spike protein substitution G142D in Delta-lineage samples. Due to the prior release and widespread use of the ARTIC V3 primers during the initial surge of the Delta variant, it is likely that the G142D amino acid substitution is substantially underrepresented among early Delta variant genomes deposited in public repositories. In addition to the improved performance of the ARTIC V4 primer set, this study also illustrates the importance of the primer scheme in downstream analyses. IMPORTANCE ARTIC Network primers are commonly used by laboratories worldwide to amplify and sequence SARS-CoV-2 present in clinical samples. As new variants have evolved and spread, it was found that the V3 primer set poorly amplified several key mutations. In this report, we compare the results of sequencing a matched set of samples with the V3 and V4 primer sets. We find that adoption of the ARTIC V4 primer set is critical for accurate sequencing of the SARS-CoV-2 spike region. The absence of metadata describing the primer scheme used will negatively impact the downstream use of publicly available SARS-Cov-2 sequencing reads and assembled genomes.


Subject(s)
Amino Acid Substitution , COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Base Sequence , Genome, Viral , Humans , Mutation , Whole Genome Sequencing
4.
Support Care Cancer ; 30(3): 2745-2753, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1536306

ABSTRACT

PURPOSE: This study compares patient-reported outcomes and treatment-related complications during radiotherapy before (August 2019-January 2020) versus during (March-Sept 2020) the COVID-19 pandemic. MATERIALS AND METHODS: The MD Anderson Symptom Inventory-head and neck module was used to assess curative intent in H&N cancer patients' symptoms during radiotherapy. RESULTS: There were 158 patients in the pre-pandemic cohort and 137 patients in the pandemic cohort. There was no significant difference in enteral feeding requirements between the cohorts (21% versus 30%, p = 0.07). Weight loss was higher during the pandemic (mean - 5.6% versus 6.8%, p = 0.03). On multivariate analysis, treatment during the pandemic was associated with higher symptom scores for coughing/choking while eating (2.7 versus 2.1, p = 0.013). CONCLUSIONS: Complication rates during H&N radiotherapy during the COVID-19 pandemic were similar at our institution relative to the pre-pandemic era, although weight loss was greater and patients reported more severe choking/coughing while eating.


Subject(s)
COVID-19 , Head and Neck Neoplasms , Head and Neck Neoplasms/radiotherapy , Humans , Pandemics , Patient Reported Outcome Measures , SARS-CoV-2
5.
Am J Pathol ; 192(2): 320-331, 2022 02.
Article in English | MEDLINE | ID: covidwho-1509508

ABSTRACT

Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have repeatedly altered the course of the coronavirus disease 2019 (COVID-19) pandemic. Delta variants are now the focus of intense international attention because they are causing widespread COVID-19 globally and are associated with vaccine breakthrough cases. We sequenced 16,965 SARS-CoV-2 genomes from samples acquired March 15, 2021, through September 20, 2021, in the Houston Methodist hospital system. This sample represents 91% of all Methodist system COVID-19 patients during the study period. Delta variants increased rapidly from late April onward to cause 99.9% of all COVID-19 cases and spread throughout the Houston metroplex. Compared with all other variants combined, Delta caused a significantly higher rate of vaccine breakthrough cases (23.7% for Delta compared with 6.6% for all other variants combined). Importantly, significantly fewer fully vaccinated individuals required hospitalization. Vaccine breakthrough cases caused by Delta had a low median PCR cycle threshold value (a proxy for high virus load). This value was similar to the median cycle threshold value for unvaccinated patients with COVID-19 caused by Delta variants, suggesting that fully vaccinated individuals can transmit SARS-CoV-2 to others. Patients infected with Alpha and Delta variants had several significant differences. The integrated analysis indicates that vaccines used in the United States are highly effective in decreasing severe COVID-19, hospitalizations, and deaths.


Subject(s)
COVID-19/virology , SARS-CoV-2 , Adult , COVID-19 Vaccines , Female , Humans , Male , Middle Aged , Texas
6.
Am J Pathol ; 191(10): 1754-1773, 2021 10.
Article in English | MEDLINE | ID: covidwho-1486232

ABSTRACT

Certain genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of substantial concern because they may be more transmissible or detrimentally alter the pandemic course and disease features in individual patients. SARS-CoV-2 genome sequences from 12,476 patients in the Houston Methodist health care system diagnosed from January 1 through May 31, 2021 are reported here. Prevalence of the B.1.1.7 (Alpha) variant increased rapidly and caused 63% to 90% of new cases in the latter half of May. Eleven B.1.1.7 genomes had an E484K replacement in spike protein, a change also identified in other SARS-CoV-2 lineages. Compared with non-B.1.1.7-infected patients, individuals with B.1.1.7 had a significantly lower cycle threshold (a proxy for higher virus load) and significantly higher hospitalization rate. Other variants [eg, B.1.429 and B.1.427 (Epsilon), P.1 (Gamma), P.2 (Zeta), and R.1] also increased rapidly, although the magnitude was less than that in B.1.1.7. Twenty-two patients infected with B.1.617.1 (Kappa) or B.1.617.2 (Delta) variants had a high rate of hospitalization. Breakthrough cases (n = 207) in fully vaccinated patients were caused by a heterogeneous array of virus genotypes, including many not currently designated variants of interest or concern. In the aggregate, this study delineates the trajectory of SARS-CoV-2 variants circulating in a major metropolitan area, documents B.1.1.7 as the major cause of new cases in Houston, TX, and heralds the arrival of B.1.617 variants in the metroplex.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Mutation , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/transmission , COVID-19/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Texas/epidemiology
7.
Am J Pathol ; 191(6): 983-992, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157092

ABSTRACT

Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there has been international concern about the emergence of virus variants with mutations that increase transmissibility, enhance escape from the human immune response, or otherwise alter biologically important phenotypes. In late 2020, several variants of concern emerged globally, including the UK variant (B.1.1.7), the South Africa variant (B.1.351), Brazil variants (P.1 and P.2), and two related California variants of interest (B.1.429 and B.1.427). These variants are believed to have enhanced transmissibility. For the South Africa and Brazil variants, there is evidence that mutations in spike protein permit it to escape from some vaccines and therapeutic monoclonal antibodies. On the basis of our extensive genome sequencing program involving 20,453 coronavirus disease 2019 patient samples collected from March 2020 to February 2021, we report identification of all six of these SARS-CoV-2 variants among Houston Methodist Hospital (Houston, TX) patients residing in the greater metropolitan area. Although these variants are currently at relatively low frequency (aggregate of 1.1%) in the population, they are geographically widespread. Houston is the first city in the United States in which active circulation of all six current variants of concern has been documented by genome sequencing. As vaccine deployment accelerates, increased genomic surveillance of SARS-CoV-2 is essential to understanding the presence, frequency, and medical impact of consequential variants and their patterns and trajectory of dissemination.


Subject(s)
COVID-19 , Mutation , Pandemics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , Female , Humans , Male , SARS-CoV-2/isolation & purification , Texas/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL